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Abstract

The bcc refractory metals, niobium, tantalum, vanadium, chromium and

tungsten were cold worked by filing at room temperature. The broadening

of the powder pattern peaks was studied by Fourier analyses of the line

shapes. The effective particle sizes, De(hkj), and root mean squared (rms)

strains were measured in different crystallographic directions. Anisotropic

values of particle sizes observed in tantalum and niobium were an indication

of faulting in these metals. The degree of anisotropy of particle sizes

was much smaller in vanadium; tungsten and chromium showed isotropic par-

ticle sizes.

The ratio of rms strains may be calculated from the directional varia-

tion of Young's modulus. The ,.bsolute magnitude of rms strains was also

computed for isotropic bcc metals without faulting.

The amount of faulting is observed to increase with the degree of

elastic anisotropy of the bcc metals of the group Vb. Metals of group Vlb

show no x-ray diffraction evidence of faulting.

I



Introduction

The broadening of x-ray powder pattern peaks of metals by cold work-

ing is evidence of microstructural changes. Analysis of the line shapes

has revealed that the broadening may be separated into two factors. The

first term, a size factor, is independent of the order of the reflection.

It is a consequence of the small coherently diffracting domains within

the crystal and/or stacking faults in the lattice. The second factor, a

distortion term, contains all broadening which is dependent upon the

order of reflection. The state of internal microstrains introduced by

cold working is described by this distortion factor. Because faulting in

the lattice makes a large contribution to the size factor, an understand-

ing of its basic features is reviewed.

Stacking faults on the (hkf) planes of cubic crystals will result

from a mistake in the stacking sequence of the layers of atoms in the

<hkt>direction, parallel to the (hk) plane.

The normal ABCABC stacking arrangement of (111) planes in fcc metals

with its counterpart, the twinned sequence, CBACBA are described many
1-4

times in the literature. For the study of faulting in bcc metals,

the crystal is thought to be composed of layers of atoms parallel to

[1121 planes. The basic bcc unit cell contains six atom layers, desig-

nated ABCDEF, such that normal stacking is represented by ABCDEFABCDEF...,

etc. The twinned image is given FEDCBAF..., whereas a stacking fault may

be created by the insertion of an atomic plane to fbm ABCDCDEFA... In the hard

sphere model, a small expansion of the layer spacing would be required to

accommodate a layer directly above its neighbor. Although the actual

insertion of planes does not occur, the stacking fault is created as a



result of a dislocation dissociation reaction. For dislocations lying on

(112) planes with a Burger's vector in the [111] direction, a reaction of

the type

_l[lll] -- la[112] + la[ll]
236

produces a sessile dislocation array, as the r[112] partial dislocation

is the boundary of the faulted area.

The faults described above are a special type of layer faults in

which the relative displacement of the faulted layer is parallel to the

plane of the layer. When a change in the interplanar spacing occurs, the

result is called a spacing fault.6 The layer fault may be understood to

imply a combination of both stacking faults and spacing faults.

The interpretation of line broadening in terms of faulting has been

reviewed by Warren. 3 Deformation stacking faults and twin faults both

contribute to the line broadening as a term in the size factor. Twin

faulting is further characterized by the asymmetry of the broadened peaks.

According to the faulting theory, when the net broadening, i.e., the

broadening corrected for the distortion term and instrumental broadening

is attributed only to the presence of stacking faults, the ratio of the

effective particle sizes i.e. measured in the <h 1 k1 e?> and <h2 k 2( direc-

tions will be a constant, e.g.

De(111):De (100) = 2.30:1.00 (1)

for faulting on (111) planes in an fcc lattice. When other phenomena

e.g. coherent domins contribute to the particle size broadening, the

ratio decreases, approaching 1:1 in the limiting case of isotropic domain
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size. Stacking faults in fcc metals also cause a shift in the position

of powder pattern peaks.

Layer faults in bcc metals have been treated for faulting on (211)

6 6
planes, and on (310) planes. The particle size broadening, in bcc metal

powder pat"ern peaks, produced by faulting alone gives rise to the follow-

ratio of effective particle sizes:

De(110) :De(lOO):De (12) = 2.83 :1.OO:1.63 (2)

for faulting on (112) planes. Displacement of peak position is postulated

for layer faults on (211) planes with non-zero spacing faults, i.e.,

changes in interplanar spacing as well as in the stacking sequence.

Though stacking faults in bcc metals produce peak shifts for some individ-

ual components of the (hkf) reflection, when an average is taken over all

components, the net shift is zero for all powder pattern reflections.

Hence, it is the presence of a spacing fault which produced the observed

peak shifts.

Previous investigations on thoriated tungsten8 showed that the

effective particle sizes were crystallographically isotropic. The domain

size in tungsten • = 200X is thought to be a measure of the distance

between dislocations in a random arrangement in the crystal. A further

study on molybdenum filings recorded no evidence for faulting on (211) as

9 0
a result of cold work. 9 The observed isotropic domain size D = 260A is

similar to that of tungsten. The strains are noted to be inversely

proportional to the directional variation of Young's modulus.

Broadening iný-brass powder patterns indicates an anisotropic

particle size. The measured ratio D (U1o :D(l00) 2.25:1 cannot be

e et



understood in terms of distances between dislocations alone, but faulting

on (211) planes must make an important contribution to the particle size

broadening.7 The dom-ins in tantalum,I0 and in a tantalum -0.63 niobium

alloy are also anisotropic, though of a smaller ratio De(llO):De(100l)

1.7:1 than in -brass. This data also suggests the presence of faulting

in tantalum. A large anisotropy of effective particle size is observed

12in 0-iron D (n10):De( 0lO0) = 2.00:1.00. Peak shifts were observed in

niobium filings, suggesting the presence of layer faults, but not in

tantalum filings. 6 If one interprets the line broadening for tantalum in

terms of faulting, then the absence of peak shifts indicates that there

will be no spacing faults, but only stacking faults.

Evidence for faulting is also found in the intermediate phase -

AlNi.13 This alloy, which forms a superlattice structure, exhibits an

anisotropic broadening of the fundamental lines, i.e., De(ll0):De(l00)

2.6:1.0. Two independent investigations14,15 on Fe-Ni martensites

observed that cold working of this bcc phase produces anisotropic broad-

ening. One value of the ratio of effective particle sizes approaches

that of the theoretical ratio, De(l10):De(100):De(ll2) = 2.8- 3.0:1.0:

1.5; from the other study, 15 the ratio is slightly less anisotropic,

i.e., 2.3:1.0:1.3 respectively. Deformed Fe-16Cr-12Ni 15 shows similar

anisotropic particle sizes.

Anisotropic broadening may be produced in pure iron by cathodic

16
charging with hydrogen. The experimental ratios of 2.12:1.00:1.53 MY

also be measured for pure iron deformed 5% in tension.

The purpose of this research is to continue the investigstion of

the sources of line broadening in the other Group YB and VID metals.
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From the previous studies (on both fcc and bcc metals) of faulting, it

appears that the metals exhibiting isotropic effective particle size we a"

elastically isotropic, or show only small deviation from the true iso-

tropic state. On the other hand, metals with a large degree of elastic

anisotropy contaiii anisotropic domains. If the methods of analysis used

previously to separate the distortion and size factors are the correct

ones, then the anisotropy of particle sizes is a real characteristic of

the metal.

A measure of anisotropy A is defined as A = 2S44/(ll-S12) where Sij

are the elastic compliances. True isotropic metals, e.g., tungsten, have

an A = 1.0. If the same anisotropy of particle size exists for metal

with A values greater and less than unity, then the interpretation of the

particle size in terms of faulting appears to be correct.

Experimental Procedure

Cold working of the refractory metals (niobium, tantalum, vanadium,

tungsten and chromium) was achieved by hand filing at room temperature.

Steel contamination was removed by magnetic separation. The filings,

screened through 150 mesh, were encapsulated in fused quartz under a

vacuum. Chromium and vanadium powders were each annealed at 1000 +100C

for 1 hr., niobium powders at 11000C for 3 hours, and tantalum powder at

11000C for 5 hours'. Debye-Scherrer photograms indicated complete

recrystallization for all the respective heat treatments.

Annealed filings were screened further to -325 mesh, and then all

filings were ccoqacted into briquets using Duco cement as a binder, and

flattened with a glassplate.
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standard for all methods used. The measured value of the lattice parame-

ter 3.1651 X, using CuKw, is in good agreement with the published value.

To a'curately determine the background level of the cold worked
14

peaks, the comparison method, after Sato, was used. This approach

entails the measurement of diffracted intensity for both cold worked and

annealed powders over the entire diffractometer range. The diffracted

intensity from the same metal varies with pressure of densification, the

amount of binder, and the smoothness of the compacted surface of the

powder. Nevertheless, the ratio of annealed powder intensity to cold

worked powder intensity will be a constant, very near to unity, for all

values of 29, whenever the intensity is that of the true background. The

achievement of this uniform ratio was used as an indication of the meas-

urement of the true background level for cold worked peaks.

Experimental Results:

Peak Position Measurements

Precision lattice parameter measurements were made from both cold

worked and annealed metals. Experimental errors are anticipated to

result from (1) temperature fluctuation; (2) displacement of the specimen

surface from tangency to the focusing circle; and, (3) macroscopic uneven-

18ness of the specimen surface.

Temperature differences of ±20C during the measurement of a given

series of peak positions would cause a maximum error of < 0 .00032 in the

correct lattice parameter, due to the thermal expansion (averaged for the

refractory metals). Eaxination of the diffractometer geometry indicates
o2@

that the function f(G) - c will compensate for the displacement error
sing

of the msaple from .the d~iffractoimeter axis.
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Figure 1 shows the plot of the lattice parameters ahk as a function

of f(O) for the tungsten standard and chromium samples. A positive slope

of the ahkt-VS-f(G) curve indicates the displacement of the sample sur-

face behind (or below) the focusing circle. The true lattice parameter,
-2

a0 , is that value of ahko extrapolated to 02!sin@ •
sing

There is no evidence (see figure 2) that peak shifts occur in any

regular manner for niobium, tungsten, tantalum, vanadium or chromium

after cold working as is predicted by the spacing fault theory for bcc

metals. There are no measurable changes in lattice parameter for

tungsten or chromium upon cold working.

Peak Broadening

The Fourier coefficients for chromium are shown in Figure 3, plotted

as a function of the distance L normal to the reflecting planes (hk().

This distance L = nchkt, is the product of the harmonic number n, and

the interplanar distance dhkC of the reflecting lattice planes. To

separate the effect of strain and particle size on the broadening, the

Warren-Averbach method is followed.3 The distortion broadening is depend-

ent upon the order of the reflection, whereas the particle size coeffi-

cients are independent variables. The coefficient my be written

AL VAPL + In 4 h.(3)

where AL are the measured coefficients

PAL are the particle size coefficients

4 are the strain coefficients, dependent upon

6.- (hik2 +12 ) 1/2, the order of reflection.
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~ DFor small values of n and, the distortion coefficient AL which equals
h2

<COsa-.-Olof may be expanded, and equation (1) is then written in terms

o a mean squared strain<4 2L>:

2 2

Sa is the lattice parameter and(E L> is the component of the mean

square strain normal to the reflecting planes, and averaged over the

length L and over all of the samle.

2SFigure 4, the plot of IhAL as a function of ho is drawn for

chromium from the data supplied in Figure 3. The intercept value of

IhLa 2 P
IL at ho = 0 gives the particle size coefficient AL, and the slope is

proportional to the root mean squared (rms) strain components<( L2>1/2.

When the particle size coefficients obtained from the (hkV) reflections

are plotted as a function of L, the intercept on L of the initial slope

is termed the effective particle size, De(hkt).normal to the (hkf)

planes, i.e. in the <hkf)direction. Figures 5 through 8 show the

corresponding curves for niobium, tantalum, tungsten, and vanadium. From

these curves, the values of D (hkR) are calculated, and are presented in

Table 1.

Discussion

From the curves in Figure 9, it is seen that the measured particle

size for tungsten is isotropic, De = 2 2OX. This portion of the experi-
8

ment was a repetition of the study by McKeehan and Warren, who also
0

found an isotropic particle size of the same magnitude (200A).

Chromium also possesses an isotropic particle size, but slightly
0

larger than that of tungsten, i.e., De 285A. These domains are the
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sawe size as those observed in molybdenum (260).9 Due to the brittle

nature of the chromium, the degree of deformation in each batch of filings

varied. This was evidenced by the fact that the De(hkt) change from one
e
0

sample to another, within the range from 250 - 300A. However, for each

individual sample, the observed De was in all cases, isotropic.

P
Reexamination of Figure 3 for chromium shows that the AL follow a

straight line dependence upon L, from L - 2A to L - 1002. Below L -

20X, the A curve exhibits the well-known hook effect, described many

times in earlier studies.3 The importance of this constant slope is

understood in terms of the distribution of particle sizes. A distribution

function p(L) is introduced, and the Fourier coefficients are written in

P
terms of this function. The second derivative of AL with respect to L

is written

2 P
dAL = - p1 L) (5)

where (D) is the particle size, and

p(L) is the distribution function of crystallite sizes

L cells long in the hk t direction.

Physically the constant slope observed implies that the distribution

function p(L) is a very narrow one. This means that there is only a

small rsnge in size of domains in chromium.

From Table 1, one sees that the values of D,(11O) and D,(100) for

tantalum are in good agreement with those observed in previous studies.10'1

The large anisotropy of the ratio De( ll0):D,0O0) = 1.62 will be interpreted

as evidence for faulting in tantalum.

I,
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The effective particle sizes in niobium are slightly less anisotropic

than those in tantalum. The particle sizes in the (no0>, <100) and (112)

0 0 0
directions are 215A, 140A, and 120A respectively. The value of De (112) =

0
120A is somewhat lower than is anticipated by the faulting theory. This

is attributed to the errors involved in accurately determining the back-

ground level on either side of the (422) peak measured with Mo radiation.

If the tails of the broadened peak are cut too short during the analysis,

the zeroth coefficient will be too small and consequently all AL(422) will

be too large.

Measurement of the true background for the niobium (400) was achieved

without difficulty, as the (400) was not broadened as much as the (220)

peak. For tantalum, the opposite is true, and extreme care must be taken

in selecting the correct (400) background level. In each case, the

proper measurement of (400) gives anisotropic particles for tantalum and

niobium indicating the presence of faulting.

The effective particle sizes may be rewritten such that they are

interpretable in terms of the actual size of domains in the crystal, and

stacking faults. 1 5

1 .48 LJ5v4 2.9 (6a)
D(110)

1 j + 0.80 + (1-504) 4 (6b)
D e(10 0  ' _T a

The above equations are valid for mall L, and small values of stacking

fault and twin fault probabilities o( and( respectively. D* Is the actual

size of the domins normal to the fault planes (211), and T is the

dimension of the faulted region in the (211) planes, of a metal with
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lattice parameter, I Because their functional dependence on orientation

is small, the first two right hand terms in 6a and 6b my be equated

1 .4 + 0.792 0.54 + 08 7D * T D* T

such that D now represents the average actual domain size in the crystal,

independent of orientation factors. Values of D and (1.5K+) calculated

from equations (6a) and (6b) as modified by equation (7) are presented in

Table II. The fault probabilities for tantalum, iron and niobium are the

same, which is expected for metals with large anisotropic particle sizes.

Small amounts of faulting are measured for vanadium, and none for tungsten,

chromium and molybdenum.

In the limiting case when D* -• 00 , the value of T represents the

minimum distance between adjacent boundaries in the fault plane. The

values of this minimum T, written Trin, as calculated for some bcc metals

by Wagner, et al. is related to D by the equation T = O.8D, neglecting

small differences due to orientations.

The root mean sqtared strain, calculated from the slope of the In AL
2vs. ho curves for each metal, according to equation (3), are presented in

Figures 9 and 10 for all the metals. The strain decreases with increasing

L, reaching an asymptotic value, characteristic of the metal and crystallo-

graphic direction. The shape of the strain distribution as a function of

L is consistent with the picture of dislocation arrangement in these

crystals. Due to the long range interactions of the stresses around a

dislocation, the balance of positive and negative stresses will produce

an arjuptotic strain value, at some average distance away from the source

of stress. The values of rwsa strains averaged over the distance L from

- a - - . - --- a__ ___ ____ ___ _ -
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20A to 100A are tabulated in Table III. In addition, it is observed that

0
the strains measured at L - 50A are essentially equal to the corresponding

average values.

The variation of strains in the different crystallographic directions

may be predicted by examination of the directional variation of Young's

modulus. Using the elastic compliances Si, one may compute the direc-

tional Young's modulus, Ehk, from the equation

E1 ~ =S 1 1 ( 2  Sj4 [ (8)
Ehi 11 h -2 ( Sll S2 2, 44

S h2 2 2 2 2)8
(h 4k + kE )t

The values of the compliances Si%, the orientation factor F , and

for representative directions are also given in Table 3. If the stress

distribution during filing is isotropic, then the residual microstrains

in the <hke> direction will be inversely proportional to the directional
S1/2 -

Young's modulus, i.e.,4 E In addition, the ratio of strains

will be inversely proportional to the ratio of Young's modulus. From

Table 3, the good agreement between calculated and measured ratios of

strain is noted. Tungsten is observed isotropic, as is expected. The

measured strain ratio in chromium is 1.20 whereas the calculated one is

1.22. Vanadium has an observed ratio of 1.19 against a predicted value

of 1.22. The large elastic anisotropy for both niobium and tantalum are

measured as predicted, although the anisotropy factors are opposite in

nature. For niobium, the measured ratio is 1. 43 compared to the expected

1.59 ratio. For tantalum, the measured value is 0.78 compared to the

computed ratio of 0.756. The fact that the measured strain ratios

I __________________________________ "-.---........... . . L,- - -""
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approach the high values anticipated by the isotropic stress model

indicates that the stress is nearly isotropic. However, the model does

not offer a method for calculating the distribution of strain as a

function of L.

The isotropic stress model yields only values of the ratio of strain

in the different crystallographic directions. A method for the calcula-

tion of the asymptotic strain in a given <hkf>direction for an isotropic

metal is presented by Ryaboshapka and Tikhanov.p They consider the

distortions surrounding dislocation arrays, after the manner of Eshelby,

et al.20 for cubic lattices. For elastically isotropic bcc crystals

containing slip in the <111> direction on all O1101, (112ý are 11231

planes the crystallographic mean squared strain is calculated separately,

for strain due to edge dislocation, and screw dislocation. For these

calculations, it is assumed that the dislocations are not dissociated,

such that the distance between dislocation, 2R, my be used to calculate

the density of dislocations. The mean squared strain due to edge dis-

locations is

S7242 - 680 ÷ 2j1  2402 - 440 + 19(
S) 4Q+(9)

b22 lli 14(l-ej 72) 2-_680 + 25

2where J -b R

41922 r~

b is the Burger's vector, 2R is the average distance between dislocations,

Sis the size of the dislocation core, and 0 is the Poisson's ratio.

The mean squared strain due to pure screw dislocations is given

2e h t J 1 2 )( 0

- - - -- - - -- -* *-a ~ e 9
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Application of these last two equations for tungsten for the calculation

of the same strain ratios as before gives the following results. The

calculated rms strain is 1.9 x 10", which is the same as the asymptotic

measured value. If the entire deformation were due to edge dislocations,

then according to formula (11), the ratio ,IO> 1.01. If it is

'100 edge dislocation

assumed that all strains are a result of the presence of screw disloca-

tions alone, then the difference between mean squared strains for the

different directions is quite large, i.e. . 00.1.

100 screw dislocation

Therefore, the result of this isotropic elasticity model is that the cold

working of tungsten produces many more edge dislocations than screws.

In order to calculate J, the value of 2R formula (9) and (10) that

is used in chosen such that 2R - 5 measured by the broadening.

Applying this method to chromium, there is good agreement between

observed and calculated strains and strain ratios. The observed strains

have average values of 3.3 x 10- and 2.9 x 10- for the <110) and (100>

directions, respectively, giving a ratio of 1.14. Assuming all edge
dilcain, h trisar . -3 -3

dislocations, the strains are 2.14 x 10 and 1.96 x 10 , respectively,

and a ratio of 1.09. This is a very good agreement between the measured

and calculated values of the ratios of strains in the different crystal-

lographic directions. However, since we assumed that only edge disloca-

tion are present and that chromium is elastically isotropic, the absolute

magnitudes of strains are not in agreement. Assuming that the screw

dislocation produces all the deformation, the strains and ratios are 2.32

10-, 3.32 x 10-3, and 0.71 respectively. The value for <,-100 does

100
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not agree at all with the observed value and reveals the limitation of

this model. The strain ratio produced by screw dislocations alone will

be a constant for isotropic media, for a given value of D.

When one plots the strain ratios as a function of the anisotropy, we

see the expected decrease in ratio, as one would calculate from the ratio

of directional Young's modulus. Since these strain values approach the

theoretical ones, the stresses in the filings are nearly isotropic.

Using the isotropic approximation for vanadium, the picture of

deformation is more reasonable than that for tungsten and chromium. The

observed strains are midway between those predicted by the edge disloca-

tion or the screw dislocation models. This indicates an equal amount of

edge and screw dislocation. In the strain calculation, the value D was

equated to 2R, the average distance between dislocation. Continuing on

this assumption, we can calculate the approximate dislocation density in

the filed metals by the relationship

2R = 2 (11)

computed values as listed in Table III.

In another series of calculations, Ryaboshapka and Tikhanov2 1 study

metals with elastic anisotropy. However, no provision is made in their

equations for the changes in stress fields due to the dissociation of

dislocations and production of faulted regions. Therefore, a calculation

of the strains in metals containing stacking faults was not attempted.

Correlating the results from the particle size measurements and the

strain calculations, we are led to the conclusion that the degree of

faulting in bcc metals is dependent upon the relative elastic anisotropy
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of the crystal lattice. The particle size ratios are plotted as a

function of the anisotropy factor A, in figure 11. For a conmletely

isotropic metal, such as tungsten S11 - S12 = $44, and A = 1. The

metals which are isotropic or only slightly anisotropic contain isotropic

particle sizes, e.g., W, Mo, Cr. The bcc metals which have high degrees

of anisotropy have effective particle sizes which are definitely

anisotropic. This is true for values of A(<.0 or A>l.0, e.g., niobium,

tantalum, iron and brass. Since anisotropy of particle size is a real

phenomenon, and not the result of an arbitrary separation of size and

distortion factors, one is left with the need of a theory that would

predict such anisotropy. Such a prediction my be made from the theory

of faulting in bcc metals.

A significant amount of evidence from a variety of supplementary

experimental techniques indicates that the high value of x-ray-determined

fault probabilities observed in this study could be interpreted as the

result of micro-twinning.

Changes in the microstructure, e.g., arrangement of dislocation and

amount of twinning, as a function of deformation in bcc metals and alloys

will occur if (1) the temperature of deformation is lowered, (2) the

velocity of deformation is increased, or (3) an alloying element is

added. 2 5 The ability to relieve internal stresses by cross-slip also

decreases under these conditions. Viewed in this light, the large

strains and high strain rates in the filing deformation could easily

produce a twin mode of deformation in metals which normally do not twin

at room temperature.

This change in the manner of deformation from slip to twinning has

_.... .. ..__ _
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been observed3 1 and confirmed3 for both pure o(-iron and alloys of iron-

silicon. Iron deforms by slip at room temperature, under the strain

rates applicable by a tensile test. However large quantities of Newmann

lamellae, i.e., twins, are found when the same metal is tested by impact

loading. Twins also appear on fracture surfaces, and in surfaces close

to the fracture path implying that the shock of fracture will cause the

twins to form. When the deformation takes place at very low temperatures,

the twinning mechanism operates for both g-iron27 and silicon-iron alloy,28

regardless of the method of load application. The addition of silicon to

(-iron allows twins to form in badly distorted (prestrained) lattices,

where twinning might not otherwise occur. 3 3  Studies now in progress, by

the authors, on silicon-iron alloys (1 - 4% silicon) indicate that the

faulting probability increases with percentage of silicon. If the

addition of silicon acts to prevent cross-slip, then twinning would be

the more favorable mode of stress relaxation.
0

Deformation twins about 40A wide have been observed in the isomor-

phous alloy of Fe-3.17 P . These twins form after only a small strain in
compression and give rise to a serrated stress-strain curve.25 Many of

the bec metals that have been studied by the line profile analysis

methods, have also been examined by supplementary experiments. Both

QAMI and =CuZn show a large anisotropy of effective particle size. In

addition, the determination of the degree of long range order in these

alloys shows that the disordering produced by the plastic deformation

(slip, twinning, and faulting) is very small.13 Twin faulting introduces

the least disturbance to the order, as compared with other faults.7

Marensite platelets of Fe-2ONi0O.8C steels havet been tound to
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0
contain very narrow internal twins, with an average width of 1OA, and a

24.similar spacing between the twins. Another electron microscopy investi-

pation of Fe-3ONi alloy shows that, even with the absence of carbon,

twinning occurs in the martensite plates. These twins themselves may be

intensely faulted as the twin structure micrographs contains diffraction

26contrast within the twin. If one compares the x-ray fault probabilities

for these nartensites with those ofo(-iron, one is lead to conclude that

the large fault probability is a measure of the twinned martensite

platelets .1,15

The degree of micro-twinning in niobium-vanadium alloys has been

observed to be dependent upon alloying content and deformation tempera-

ture, as well as other factors. By increasing the percentage of vanadium,

twinning was observed to occur under conditions where neither pure metal

would twin, e.g., at IIOC with deformation by rolling. In a molybdenum

alloy containing 35 percent rhenium, deformation twins occur in abundance

at room temperature.30 A series of isomorphous alloys of niobium and

rhenium, currently under investigation by the authors, also have been

found to have a fault probability that goes through a maximum as the per-

centage of rhenium is increased.
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Table I: Directional Variation of Young's Modulus

Metal Elastic Cowliances* ,Youn'sa Modulus+ Aisotropy Reference

Vanadium 0.683 0.513 2.347 1.23 1.46 1.17 0.79 23

Niobium 0.660 0.233 3.50 0.95 1.51 0.75 0.51 23

Tantalum 0.686 0.258 1.212 1.93 1.46 2.17 1.6 23

Chromium 0.305 0.0491 0.990 2.67 3.27 2.51 0.71 23

Molybdenum 0.28 0.078 0.91 3.0 3.6 2.9 0.79 22

Tungsten 0.257 0.073 0.660 3.89 3.89 3.89 1.00 22

Iron 0.743 0.277 0.846 2.31 1.32 2.82 2.4 22

* i 1 2 cm 2 /dyne

12 2+ 10m dy/cm
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Table II (b): IsotroDic Particle Size MeAsurements

Metal 'De), A Deformation Conditions Reference

Chromium 285 Filing at R.T.

Tungsten 1 220 Filing at R.T.
,, 2 200 Filing at R.T. 8

Molybdenum 260 Filing at R.T. 9

*This investigtion

R.T. - Room Tenperature

JA
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FiSwe 1 Precision lattice paimeter measurements of annealed and
cold vorked tungsten and chromiu filings. Intercept value
at 0 - 0 Is the true lattice parameter.
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Figure 2 Precision lattice parameter measurements group V metals cold
worked by filing. No systematic peak shift is observed.
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Figure 3 Fourier coefficients for cold worked chromium as a function
of the distance variable L -
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Figure 1 Logarittmic represJntation of Fourier coefficients of chromium
as a function of h0 , at selected values of L.
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Figure 5 Loprithmic representation of Fourier coefficients of tungsten
as a function of hg, at selected values of L.
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FiLgtre 6 Lo~i~tic wepre�.ntation of Fourier coefficients of vanadium
as a function of V06, at selected values of L.
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Figure Lo7 ithwt c repreWgntation of Fourier coefficients of niobium
as a function of bt, at selected values of L.
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Figure 8 Logarit•mic represintation of Fourier coefficients of tantalum
as a function of h's at selected values of L.
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li .' 9 VhWrsiation of zroot mean squared strain as a fun:tion of L in
iffeent wyet.flopsphi:o dr4ction for tunmptn,, ohroinum

and vanadium.
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Figure 10 Variation of root mean squared strain as a function of L in
different crystallographic directions for niobiun and tantalum.
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Figure 11 Variation of the ratio of effective particle sizes and of the
ratio of root mean squared strains in the <110) to (o00
direction as functions of the elastic anistropy.
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